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1. DARK ENERGY
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White (UCB, LBL).

1.1. Repulsive Gravity and Cosmic Acceleration

In the first modern cosmological model, Einstein [1] modified his field equation of
General Relativity, introducing a “cosmological term” that enabled a solution with
time-independent, spatially homogeneous matter density ρm and constant positive space
curvature. Although Einstein did not frame it this way, one can view the “cosmological
constant” Λ as representing a constant energy density of the vacuum [2], whose repulsive
gravitational effect balances the attractive gravity of matter and thereby allows a static
solution. After the development of dynamic cosmological models [3,4] and the discovery
of cosmic expansion [5], the cosmological term appeared unnecessary, and Einstein and
de Sitter [6] advocated adopting an expanding, homogeneous and isotropic, spatially flat,
matter-dominated universe as the default cosmology until observations dictated otherwise.
Such a model has matter density equal to the critical density, Ωm ≡ ρm/ρc = 1, and
negligible contribution from other energy components [7].

By the mid-1990s, Big Bang cosmology was convincingly established but the Einstein-
de Sitter model was showing numerous cracks, under the combined onslaught of data
from the cosmic microwave background (CMB), large scale galaxy clustering, and direct
estimates of the matter density, the expansion rate (H0), and the age of the universe. In
the late 1990s, supernova surveys by two independent teams provided direct evidence for
accelerating cosmic expansion [8,9], establishing a model with sub-critical matter density
and a cosmological constant (Ωm ≈ 0.3, ΩΛ ≈ 0.7) as the preferred alternative to the
Ωm = 1 scenario. Shortly thereafter, CMB evidence for a spatially flat universe [10,11],
and thus for Ωtot ≈ 1, cemented the case for cosmic acceleration by firmly eliminating the
free-expansion alternative with Ωm ≪ 1 and ΩΛ = 0. Today, the accelerating universe
is well established by multiple lines of independent evidence from a tight web of precise
cosmological measurements.

According to GR, the scale factor R(t) of a homogeneous and isotropic universe obeys
the equation

R̈

R
= −

4πGN

3
(ρ + 3p) (1.1)

(see §19.1.3 of this Review, but note that we have absorbed the cosmological term Λgµν

into the stress-energy tensor Tµν), and energy conservation requires

ρ̇ = −3H (ρ + p) , (1.2)

where H(t) ≡ Ṙ/R is the Hubble parameter. Non-relativistic matter (with sound speed
cs ≪ c) has p ≈ 0. Accelerating expansion, with R̈ > 0, requires an energy component
with p < −1

3ρtot, where ρtot is the summed energy density of all components. A
cosmological constant, which by definition has ρ̇Λ = 0, must have pΛ = −ρΛ, so it will
drive acceleration if it dominates the total energy density. However, acceleration could
arise from a more general form of “dark energy” with negative pressure. Discussions of
dark energy frequently focus on the equation-of-state parameter

w ≡ pDE/ρDE , (1.3)

which may be a function of time. A cosmological constant corresponds to w = −1. It
is important to keep in mind, however, that the existing data provide evidence directly
(more or less) for cosmic acceleration, and the inference of a new energy component
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2 1. Dark energy

relies on the further assumption that GR is the correct theory of gravity on cosmological
scales. The title of this article follows the common but inexact usage of “dark energy”
as a catch-all term for the origin of cosmic acceleration, regardless of whether it arises
from a new form of energy or modified gravity. Our account here draws on the much
longer review of cosmic acceleration by [12], which provides background explanation and
extensive literature references for most of the points in this article, but is less up to date
in its description of current empirical constraints.

Below we will use the abbreviation ΛCDM to refer to a model with cold dark matter, a
cosmological constant, inflationary initial conditions, and standard radiation and neutrino
content. We will use “flat ΛCDM” to further specify a flat universe with Ωtot = 1. We
will use wCDM to denote a model with the same assumptions (including flatness) but a
free, constant value of w.

1.2. Theories of Cosmic Acceleration

1.2.1. Dark Energy or Modified Gravity?:

A cosmological constant is the mathematically simplest, and perhaps the physically
simplest, theoretical explanation for the accelerating universe. The problem is one of
magnitude: there is no obvious reason that the energy density of the quantum vacuum
should be zero, but the observationally implied energy scale of ∼ 10−3 eV is many,
many orders of magnitude from the Planck scale ∼ 1028 eV or electroweak scale
∼ 1012 eV that seem reasonable on theoretical grounds. In terms of energy density,
ρDE ∼ 10−120ρPlanck, and obtaining ρΛ ∼ ρm today requires extraordinary fine-tuning
in the early universe because ρΛ/ρm ∝ [R(t)/R0]

3. Prior to the discovery of cosmic
acceleration, it was regarded as an important theoretical challenge to explain why the
fundamental vacuum energy was vanishingly small or exactly zero; this challenge was the
original version of “the cosmological constant problem.” In a multiverse scenario where
the vacuum energy assumes different values in spatially distinct regions (or, perhaps,
different values at different times), anthropic arguments offer a possible explanation for a
value of ρΛ ≪ ρPlanck, because cosmic structures hospitable to life (galaxies → stars →
planets) cannot arise if vacuum energy comes to dominate before non-linear gravitational
clustering takes hold [13]. However, the anthropic explanation requires a particular class
of cosmological setting to be viable at all, and the “predicted” value of ρΛ/ρm is sensitive
to the choice of which other cosmological parameters are allowed to vary [14,15].

Alternatively, the true fundamental constant could be zero, and the accelerating cosmic
expansion could be driven by a new form of energy such as a scalar field [16]. The
energy density and pressure of a canonical scalar field φ(x) are

ρφ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2

pφ =
1

2
φ̇2 − V (φ) −

1

6
(∇φ)2 .

(1.4)

Expansion suppresses gradients on sub-horizon scales, driving down the last term in each
equation. In the limit that 1

2 φ̇2 ≪ |V (φ)|, the scalar field then acts like a cosmological
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1. Dark energy 3

constant, with pφ ≈ −ρφ. In this scalar field scenario, today’s cosmic acceleration is
closely akin to the epoch of inflation, but with radically different energy and timescale.

More generally, the value of w = pφ/ρφ evolves with time in a way that depends on

V (φ) and on the initial conditions (φi, φ̇i); some forms of V (φ) have attractor solutions in
which the late-time behavior is insensitive to initial values. Many forms of time evolution
are possible, including ones where w is approximately constant and broad classes where w
“freezes” towards or “thaws” away from w = −1, with the transition occurring when the
field comes to dominate the total energy budget. If ρφ is even approximately constant,
then it becomes dynamically insignificant at high redshift because the matter density
scales as ρm ∝ (1 + z)3. “Early dark energy” models are ones in which ρφ is a small but
not negligible fraction (e.g., a few percent) of the total energy throughout the matter
and radiation dominated eras, tracking the dominant component before itself coming to
dominate at low redshift.

Instead of introducing a new energy component, one can attempt to modify gravity
in a way that leads to accelerated expansion [17]. One option is to replace the Ricci
scalar R with a function R + f(R) in the gravitational action [18]. Other changes can
be more radical, such as introducing extra dimensions and allowing gravitons to “leak”
off the brane that represents the observable universe (the “DGP” model of [19]) . The
DGP example has inspired a more general class of “galileon” and massive gravity models.
Constructing viable modified gravity models is challenging, in part because it is easy to
introduce theoretical inconsistencies (such as “ghost” fields with negative kinetic energy)
but above all because GR is a theory with many high-precision empirical successes on
solar system scales [20]. Modified gravity models typically invoke screening mechanisms
that force model predictions to approach those of GR in regions of high density or
strong gravitational potential. The best studied mechanisms are chameleon screening,
in which the scalar field becomes massive in dense regions, and Vainshtein screening,
where a non-linear kinetic term suppresses the scalar in massive objects. Screening offers
potentially distinctive signatures, as the strength of gravity (i.e., the effective value of GN )
can vary by order unity in different environments or for different categories of objects.
To give a specific, illustrative example, the fact that massive variable stars (which are
puffy enough to have low gravitational potential) exhibit similar pulsation properties in
massive galaxies and isolated dwarf galaxies sets tight constraints on chameleon models
that tie screening to the value of the gravitational potential [21].

More generally, one can search for signatures of modified gravity by comparing the
history of cosmic structure growth to the history of cosmic expansion. Within GR, these
two are linked by a consistency relation, as described below (Eq. (1.11)). Modifying
gravity can change the predicted rate of structure growth, and it can make the growth
rate dependent on scale or environment. In some circumstances, modified gravity can also
lead to order unity mismatches between masses inferred from gravitational lensing and
masses inferred from the dynamics of non-relativistic tracers (such as galaxies or stars).
In GR, lensing and dynamics are governed by combinations of potentials that are distinct
in principle (representing time-time and space-space components of the metric) but equal
in practical situations, where Tµν does not have strong anisotropic stress. In modified
gravity theories the two potentials can differ significantly. One can view this mismatch as
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4 1. Dark energy

an effect of scalar fields that couple to matter but do not produce light-bending, and it
is eliminated in screened environments like the solar system or the Milky Way. Where
a mismatch occurs, lensing typically reflects the true mass distribution while dynamical
motions are generally stronger because of scalar field effects.

As the cosmological constant itself illustrates, the classification of a model as “dark
energy” or “modified gravity” may be ambiguous, since one can shift terms from the left
(“gravity”) side of the Einstein equation to the right (“stress-energy”) side. For example,
f(R) models can be recast as models with GR and scalar fields with specified properties.
However, these models remain distinct from the simplest dark energy models because the
scalar fields couple directly to matter in addition to affecting the expansion history.

At present there are no fully realized and empirically viable modified gravity theories
that explain the observed level of cosmic acceleration. The constraints on chameleon
screening in f(R) models now force them so close to GR that they cannot produce
acceleration without introducing a separate dark energy component [22]. The DGP
model is empirically ruled out by several tests, including the expansion history, the
integrated Sachs-Wolfe effect, and redshift-space distortion measurements of the structure
growth rate [23]. The elimination of these models should be considered an important
success of the program to empirically test theories of cosmic acceleration. However, there
was no fully realized gravitational explanation for the precession of Mercury’s orbit prior
to the completion of GR in 1915, and the fact that no complete and viable modified
gravity theory exists today does not mean that one will not arise in the future. In the
meantime, we can continue empirical investigations that can tighten the screws on such
theories or perhaps point towards the gravitational sector as the origin of accelerating
expansion.

1.2.2. Expansion History and Growth of Structure:

The main line of empirical attack on dark energy is to measure the history of cosmic
expansion and the history of matter clustering with the greatest achievable precision over
a wide range of redshift. Within GR, the expansion rate H(z) ≡ Ṙ/R is governed by the
Friedmann equation, which can be written in the convenient form

H2 (z)

H2
0

= Ωm (1 + z)3 + Ωr (1 + z)4 + Ωk (1 + z)2 + ΩDE
ρDE (z)

ρDE (z = 0)
. (1.5)

Here Ωm, Ωr, and ΩDE are the present-day densities of matter, radiation, and dark
energy in units of the critical density, and

Ωk = 1 − Ωtot = 1 − Ωm − Ωr − ΩDE . (1.6)

For dark energy with an equation of state w(z), the evolution of ρDE(z) follows from
equation Eq. (1.2),

ρDE (z)

ρDE (z = 0)
= exp

[

3

∫ z

0

[

1 + w
(

z′
)] dz′

1 + z′

]

= (1 + z)3(1+w) , (1.7)
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1. Dark energy 5

where the second equality holds for constant w. If Ωm, Ωr, and Ωk are known, then
measuring H(z) pins down w(z). If GR is not the correct description of gravity, then the
Friedmann equation may not hold, and accelerated expansion may arise even without
dark energy.

While some observations can probe H(z) directly, others measure the distance-redshift
relation. The comoving line-of-sight distance to an object at redshift z is

DC (z) =
c

H0

∫ z

0
dz′

H0

H (z′)
. (1.8)

For the comoving angular size distance, which relates an object’s transverse comoving
size to its angular size θ = xtr/DA,c(z), one must also account for the effects of space
curvature if Ωk 6= 0:

DA,c (z) =

√

−
1

Ωk

c

H0
sin

(

√

−Ωk
H0

c
DC

)

≈ DC

[

1 +
1

6
Ωk

(

DC

c/H0

)2
]

, (1.9)

where the first equality holds for either sign of Ωk and the last approximation holds
for the (relevant) case of |Ωk| ≪ 1. The luminosity distance, which relates an object’s
bolometric luminosity to its bolometric apparent flux fbol = Lbol/4πD2

L(z), is

DL (z) = (1 + z) DA,c (z) . (1.10)

The relation between these two distances is independent of cosmology and dark energy.

In GR-based linear perturbation theory, the density contrast δ(x, t) ≡ ρ(x, t)/ρ̄(t) − 1
of pressureless matter grows in proportion to the linear growth function G(t), which
follows the differential equation

G̈ + 2H (z) Ġ −
3

2
ΩmH2

0 (1 + z)3 G = 0 . (1.11)

To a good approximation, the logarithmic derivative of G(z) is

f (z) ≡ −
d lnG

d ln (1 + z)
≈

[

Ωm (1 + z)3
H2

0

H2 (z)

]γ

, (1.12)

where γ ≈ 0.55 for relevant values of cosmological parameters [24]. In an Ωm = 1
universe, G(z) ∝ (1 + z)−1, but growth slows when Ωm drops below unity. One can
integrate Eq. (1.12) to get an approximate integral relation between G(z) and H(z), but
the full (numerical) solution to Eq. (1.11) should be used for precision calculations. Even
in the non-linear regime, the amplitude of clustering is determined mainly by G(z), so
observations of non-linear structure can be used to infer the linear G(z) provided one has
good theoretical modeling to relate the two.

In modified gravity models the growth rate of gravitational clustering may differ
from the GR prediction. A general strategy to test modified gravity, therefore, is to
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6 1. Dark energy

measure both the expansion history and the growth history to see whether they yield
consistent results for H(z) or w(z). The principal challenge to measuring growth is
that G(z) describes the clustering of the total mass distribution, which is dominated
by non-luminous dark matter. As already noted, modifications to GR could also reveal
themselves via other signatures, such as scale-dependent G(z), environmental variations
in the strength of gravity, inconsistency between lensing and dynamical mass estimates,
or high-precision laboratory or solar system tests.

1.2.3. Parameters:

Constraining a general history of w(z) is nearly impossible because the dark energy
density, which affects H(z), is given by an integral over w(z), and distances and the
growth factor involve a further integration over functions of H(z). Oscillations in w(z)
over a range ∆z/(1 + z) ≪ 1 are therefore extremely difficult to constrain. It has become
conventional to phrase constraints or projected constraints on w(z) in terms of a linear
evolution model,

w (a) = w0 + wa (1 − a) = wp + wa
(

ap − a
)

, (1.13)

where a ≡ (1 + z)−1, w0 is the value of w at z = 0, and wp is the value of w at a “pivot”
redshift zp ≡ a−1

p − 1 where it is best constrained by a given set of experiments. For
typical data combinations, zp ≈ 0.5. This simple parameterization can provide a good
approximation to the predictions of many physically motivated models for observables
measured with percent-level precision. A widely used “Figure of Merit” (FoM) for
dark energy experiments [25] is the projected combination of errors [σ(wp)σ(wa)]−1.
Ambitious future experiments with ∼ 0.1 − 0.3% precision on observables can constrain
richer descriptions of w(z), which can be characterized by principal components.

There has been less convergence on a standard parameterization for describing modified
gravity theories. Deviations from the GR-predicted growth rate can be described by
a deviation ∆γ in the index of Eq. (1.12), together with an overall multiplicative
offset relative to the G(z) expected from extrapolating the CMB-measured fluctuation
amplitude to low redshift. However, these two parameters may not accurately capture
the growth predictions of all physically interesting models. Another important parameter
to constrain is the ratio of the gravitational potentials governing space curvature and the
acceleration of non-relativistic test particles. The possible phenomenology of modified
gravity models is rich, which enables many consistency tests but complicates the task of
constructing parameterized descriptions.

The more general set of cosmological parameters is discussed elsewhere in this Review
(§21), but here we highlight a few that are particularly important to the dark energy
discussion:

• The dimensionless Hubble parameter h ≡ H0/100 km s−1 Mpc−1 determines the
present day value of the critical density and the overall scaling of distances inferred
from redshifts.

• The matter density Ωm and curvature parameter Ωk affect the expansion history
(Eq. (1.5)) and the distance-redshift relation (Eq. (1.9)).
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1. Dark energy 7

• The sound horizon rs =
∫ trec
0 cs(t)dt/a(t), the comoving distance that pressure waves

can propagate between t = 0 and recombination, determines the physical scale of the
acoustic peaks in the CMB and the baryon acoustic oscillation (BAO) feature in low
redshift matter clustering [26].

• The amplitude of matter fluctuations, conventionally represented by the quantity
σ8(z), scales the overall amplitude of growth measures such as weak lensing or
redshift-space distortions (discussed in the next section).

Specifically, σ8(z) refers to the rms fluctuation of the matter overdensity ρ/ρ̄ in spheres
of radius 8h−1Mpc, computed from the linear theory matter power spectrum at
redshift z, and σ8 on its own refers to the value at z = 0 (just like our convention
for Ωm). The choice of 8h−1Mpc is convenient because rms galaxy count fluctuations
are close to unity on this scale and because the average mass in an 8 h−1Mpc sphere,
M = 2.5 × 1014(Ωm/0.3)(0.7/h)M⊙, is that of a typical rich galaxy cluster. However,
the relation between σ8 and other measures of fluctuation amplitude (at other scales or
redshifts) depends on the shape of the power spectrum and other cosmological parameters,
a complication that we gloss over in our discussion here.

While discussions of dark energy are frequently phrased in terms of values and errors
on quantities like wp, wa, ∆γ, and Ωk, parameter precision is the means to an end, not an
end in itself. The underlying goal of empirical studies of cosmic acceleration is to address
two physically profound questions:

1. Does acceleration arise from a breakdown of GR on cosmological scales or from a
new energy component that exerts repulsive gravity within GR?

2. If acceleration is caused by a new energy component, is its energy density constant
in space and time, as expected for a fundamental vacuum energy, or does it show
variations that indicate a dynamical field?

Substantial progress towards answering these questions, in particular any definitive
rejection of the cosmological constant “null hypothesis,” would be a major breakthrough
in cosmology and fundamental physics.

1.3. Observational Probes

We briefly summarize the observational probes that play the greatest role in current
constraints on dark energy. Each of these methods and its associated systematic
uncertainties is discussed at length in [12], along with a variety of other approaches.

Cosmic Microwave Background Anisotropies: On their own, CMB anisotropies provide
limited information about dark energy because they arise mainly from structure present
at recombination, when the universe was dominated by matter and radiation. However,
CMB constraints on the geometry, matter content, and radiation content of the universe
play a critical role in dark energy studies when combined with low redshift probes. From
the point of view of dark energy, the key information encoded by the CMB is:

• a high-precision determination of θs = rs/DA,c(zrec), the angular size of the sound
horizon at recombination, from the angular location of the acoustic peaks,

• tight constraints on the matter and baryon densities Ωmh2 and Ωbh
2 from the

heights of the peaks,
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8 1. Dark energy

• a measurement of the amplitude of matter fluctuations at zrec from the amplitude of
the CMB fluctuations themselves.

The matter and baryon densities allow a precise computation of the sound horizon
rs, with uncertainty of 0.4% based on current Planck data. The uncertainty in the
matter fluctuation amplitude is dominated by uncertainty in the electron scattering
optical depth, which depends on the history of reionization and is constrained by CMB
polarization measurements. The current level of uncertainty is ∼ 3% (∆τ = 0.014),
relying on WMAP polarization data, but it should drop substantially with the analysis
of Planck polarization maps. Several sources of secondary anisotropy (arising after
recombination) are also sensitive to dark energy and the growth of structure, notably
the Integrated Sachs-Wolfe effect from decaying potential wells, the Sunyaev-Zel’dovich
(SZ, [27]) distortion of the CMB spectrum by hot electron scattering, and gravitational
lensing of primary anisotropies by low redshift structure. For further discussion of the
physics of CMB anisotropies and current constraints, see §23 of this Review.

Type Ia Supernovae: Type Ia supernovae, produced by the thermonuclear explosions of
white dwarfs, have proven to be powerful cosmic distance indicators. Once corrected
for the duration of the light curve (the time required to rise to and fall from the peak
luminosity), the dispersion in their peak luminosities is only ∼ 10 − 15%. Since the
peak flux fpeak = Lpeak/4πD2

L(z), the corresponding distance error is only 5 − 8% for
a single well observed supernova, and a sample of ∼ 100 SNe is sufficient to achieve
sub-percent statistical precision. The peak luminosity is not known a priori, so in practice
supernova surveys constrain the ratios of luminosity distances at different redshifts. If
one is comparing a high redshift sample to a local calibrator sample measured with much
higher precision (and distances inferred from Hubble’s law), then one essentially measures
the luminosity distance in h−1Mpc, constraining the combination log DL(z) + log h.

Cosmological supernova surveys are observationally demanding because they require
wide field imaging with several day cadence to discover supernovae and measure their light
curves and peak fluxes in multiple bands, plus spectroscopic observations to determine
their redshifts and confirm the Type Ia identifications. Some current and planned efforts
use photometric typing and photometric redshifts of host galaxies, but spectroscopic
follow-up of a significant fraction of the sample is still needed to assess contamination
and biases. Current analyses, with samples of several hundred supernovae at redshifts
z ∼ 0.1 − 0.8, plus local calibrators and smaller high-z samples, are limited by systematic
uncertainties associated with photometric calibration and with extinction and reddening
by interstellar dust. These effects are challenging to control at the ∼ 1% level, given the
enormous difference in flux between low and high redshift samples and the redshifting
of the supernova spectral energy distribution across bandpasses. Another potential
systematic is redshift evolution of the supernova population itself. After correction for
light curve shape, the residual dependence of peak luminosity on host galaxy properties
is small compared to the dispersion, but detectable. Distance measurements at the
sub-percent level, which are clearly achievable from the point of view of statistical errors,
will likely require separate analyses of subsamples grouped by spectral properties or host
galaxy properties to confirm that they yield consistent results.
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1. Dark energy 9

Baryon Acoustic Oscillations (BAO): Prior to recombination, photons and baryons
are tightly coupled through Thomson scattering by free electrons, behaving as a fluid
with sound speed cs = c/

√

3[1 + 3ρb(z)/4ργ(z)]. Pressure waves that propagate in this
pre-recombination fluid imprint a characteristic scale in the clustering of matter and
galaxies, which appears in the galaxy correlation function as a localized peak at the
sound horizon scale rs, or in the power spectrum as a series of oscillations. Since observed
galaxy coordinates are angle and redshift, measuring this “standard ruler” scale in a
galaxy redshift survey [28] determines the angular diameter distance DA,c(z) and the
expansion rate H(z), which convert coordinate separations to comoving distances. Errors
on the two quantities are correlated, and in existing galaxy surveys the best determined
combination is approximately DV (z) = [czD2

A,c(z)/H(z)]1/3. As an approximate rule of
thumb, a survey that fully samples structures at redshift z over a comoving volume V ,
and is therefore limited by cosmic variance rather than shot noise, measures DA,c(z) with

a fractional error of 0.005(V/10Gpc3)−1/2 and H(z) with a fractional error 1.6 − 1.8
times higher. BAO can also be measured in the Lyman-α forest of intergalactic hydrogen
absorption towards background quasars [29], where the best measured parameter
combination is more heavily weighted towards H(z) because of strong redshift-space
distortions that enhance clustering along the line of sight.

BAO distance measurements complement SN distance measurements in several ways.
First, because the sound horizon can be computed to high accuracy given CMB parameter
determinations (current Planck data yield rs = 147.49 ± 0.59 Mpc), BAO distances are
effectively absolute rather than relative. Thus, SN and BAO measurements at the same
redshift yield different information, and they constrain dark energy parameters more
effectively in combination than either can alone. Second, the achievable precision with
BAO increases with redshift because of the greater comoving volume available at high z,
though one must of course observe larger numbers of galaxies to map this larger volume.
Third, current theoretical modeling suggests that BAO measurements from even the
largest feasible redshift surveys will be limited by statistical errors rather than systematic
uncertainties.

Weak Gravitational Lensing: Gravitational light bending by a clustered distribution of
matter shears the shapes of higher redshift background galaxies in a spatially coherent
manner, producing a correlated pattern of apparent ellipticities. The typical distortion of
a background galaxy shape is weak, ∼ 0.5%, compared to a ∼ 30% dispersion of intrinsic
ellipticities, so one must average over large numbers of source galaxies to detect this
cosmic shear pattern and measure it with high precision. Despite its challenges, weak
lensing is a powerful tool because it measures clustering of the total mass distribution,
not just the luminous matter, so the predicted signal is minimally affected by the complex
physics of galaxy formation. By studying the lensing signal for source galaxies binned
by photometric redshift (estimated from broad band colors), one can probe the history
of structure growth. The predicted signal also depends on the distance-redshift relation,
so weak lensing becomes more powerful in concert with SN or BAO measurements that
can pin this relation down independently. For a specified expansion history, the predicted
signal scales approximately as σ8Ω

α
m with α ≈ 0.3 − 0.5. In addition to measuring the

autocorrelation or power spectrum of a cosmic shear map, one can correlate it with
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10 1. Dark energy

foreground galaxy or cluster distributions to measure the average mass profiles of these
foreground objects, so-called galaxy-galaxy lensing or cluster-galaxy lensing.

Large galaxy imaging surveys have only recently reached the size (∼ 106 source
galaxy shape measurements) needed for few-percent precision on cosmological parameters,
but samples will grow rapidly in coming years with the advent of increasingly large
format optical and near-IR cameras. Because the intrinsic signal is weak, high precision
measurements require tight control of subtle systematics, the most challenging of which
are shape measurement biases that accumulate over millions or billions of individual
shape estimates, biases in the distribution of photometrically estimated redshifts, and
intrinsic alignments of galaxy orientations that could contaminate the lensing-induced
signal. All of these are subjects of intensive investigation by the weak lensing community.

Clusters of Galaxies: The space density of massive dark matter halos is sensitive to the
amplitude of matter clustering and the mean mass density — as with weak lensing, the
abundance of massive halos at low redshift scales with σ8Ω

α
m where α ≈ 0.3 − 0.5. These

halos can be identified as dense concentrations of galaxies or through the signatures
of hot (107 − 108 K) gas in X-ray emission or SZ distortion of the CMB. The size
and redshift range of cluster samples has grown dramatically in recent years thanks
to large optical, X-ray, and SZ surveys. The critical challenge in cluster cosmology
is calibrating the relation P (Mhalo|O) between halo mass and the observable O used
for cluster identification. Remaining competitive with other probes of structure growth
requires ∼ 1-percent accuracy in the mean relation. Gas observables are difficult to
predict from first principles at this level because of uncertainties in galaxy formation
physics, but calibration of the mean relation via weak lensing has emerged as a promising
approach. Other systematic challenges are accurately accounting for incompleteness and
contamination in cluster samples and computing the small but not negligible impact of
baryonic physics on the predicted halo mass function.

Redshift-Space Distortion and the Alcock-Paczynksi Effect: In a true 3-dimensional map,
galaxy clustering would be statistically isotropic. However, because galaxy distances are
inferred from redshift, the line of sight is a preferred direction, and peculiar velocities
induced by gravity systematically distort the pattern of galaxy clustering in redshift
space: virial dispersions stretch dense groups and clusters into “fingers of God” that
point to the observer, while coherent inflows compress large scale overdensities along the
line of sight [30]. These redshift-space distortions (RSD) can be used to constrain the
parameter combination f(z)σ8(z), where f(z) is the growth rate defined by Eq. (1.12)
[31]. The principal uncertainties lie in theoretical modeling of non-linear gravitational
evolution and the non-linear bias between the galaxy and matter distributions. These
uncertainties currently limit application of the method to large scales where the
corrections for these effects are modest (comoving separations r >

∼ 10h−1Mpc or
wavenumbers k <

∼ 0.2hMpc−1). With the advent of very large redshift surveys designed
for BAO measurements, RSD is emerging as a powerful complement to weak lensing or
cluster studies of structure growth.

A second source of anisotropy arises if one adopts the wrong cosmological metric
to convert angles and redshifts into comoving separations, a phenomenon known as
the Alcock-Paczynksi (AP) effect [32]. Demanding isotropy of clustering at redshift
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1. Dark energy 11

z constrains the parameter combination H(z)DA,c(z). The achievable precision with
large redshift surveys is high in principle, and the main challenge for the AP method is
correcting for the anisotropy induced by peculiar velocity distortions.

Direct Determination of H0: The value of H0 sets the current value of the critical density
ρc = 3H2

0/8πG, and combination with CMB measurements provides a long lever arm for
constraining the evolution of dark energy. The decades-old challenge in measuring H0 is
determining accurate distances to galaxies that are far enough away that their peculiar
velocities can be safely neglected (or averaged away) when inferring H0 = v/d. The
traditional approach to this challenge relies on a distance ladder, with Cepheid variable
stars used to calibrate the distances to local galaxies which in turn calibrate secondary
indicators (such as Type Ia SNe) that are applied to more distant galaxies, with a variety
of techniques used to calibrate the Cepheid luminosity scale itself. Recent developments,
many of them relying on high resolution imaging from the Hubble Space Telescope (HST),
have helped reduce the number of steps in this ladder and the uncertainties of individual
steps. Other approaches seek to circumvent the distance ladder by directly measuring
distances to galaxies in the Hubble flow, via gravitational lens time delays or geometrical
measurements in maser data.

1.4. Current Constraints on Expansion, Growth, and Dark Energy

The last decade has seen dramatic progress in measurements of the cosmic expansion
history and structure growth, leading to much tighter constraints on the parameters
of dark energy models. CMB data from the WMAP and Planck satellites and from
higher resolution ground-based experiments have provided an exquisitely detailed picture
of structure at the recombination epoch and the first CMB-based measures of low
redshift structure through lensing and SZ cluster counts. Cosmological supernova samples
have grown from tens to many hundreds, with continuous coverage from z = 0 to
z ≈ 1.4, alongside major improvements in data quality, analysis methods, and detailed
understanding of local populations. BAO measurements have advanced from the first
detections to 2% precision at multiple redshifts, with increasingly sophisticated methods
for testing systematics, fitting models, and evaluating statistical errors. Constraints on
low redshift structure from galaxy clusters have become more robust with improved X-ray
and SZ data and weak lensing mass calibrations, and they have been joined by the first
precise structure constraints from cosmic shear weak lensing, galaxy-galaxy lensing, and
redshift-space distortions. The precision of direct H0 measurements has sharpened from
the ∼ 10% error of the HST Key Project [33] to 3 − 4% in some recent analyses.

As an illustration of current measurements of the cosmic expansion history, Figure 1.1
compares distance-redshift measurements from SN and BAO data to the predictions
for a flat universe with a cosmological constant. SN cosmology relies on compilation
analyses that try to bring data from different surveys probing distinct redshift ranges
to a common scale. The most influential current compilations are SNLS3 [34], which
combines data from the 3-year Supernova Legacy Survey sample and the 1st-year SDSS-II
Supernova Survey sample with local calibrators and high-redshift SNe from HST surveys,
and Union2.1 [35], which has a broader selection of data, including some but not all of
the sources in SNLS3. Here we have used binned distance measurements from Union2.1,
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Figure 1.1: The distance-redshift relation measured from Type Ia SNe and BAO
compared to the predictions (grey curve) of a flat ΛCDM model with the best-fit
parameters inferred from Planck+WP CMB data. Circles show binned luminosity
distances from the Union2.1 SN sample, multiplied by (1 + z)−1 to convert to
comoving angular diameter distance. Squares show BAO distance measurements,
converted to DA,c(z) for the Planck+WP cosmology and sound horizon, from the
references given in the text. The lower panel plots residuals from the Planck ΛCDM
prediction, with dashed curves that show the effect of changing w by ±0.1 with
all other parameters held fixed. Note that the SN data points can be shifted up
or down by a constant factor to account for freedom in the absolute magnitude
normalization, while the BAO points are calibrated to 0.4% precision by the sound
horizon scale computed from Planck data.

but we caution that the different sample selections and analysis methodologies lead to
systematic differences comparable to the statistical uncertainties, and it is not obvious
which compilation, if either, should be preferred. Because the absolute magnitude of a
fiducial SN Ia is an unknown free parameter, the SN measurements could all be shifted
up and down by a constant multiplicative factor; cosmological information resides in
the relative distances as a function of redshift. The four BAO data points are taken
from analyses of the 6dFGS survey [36], SDSS-II [37], BOSS [38], and WiggleZ [39].
For the BAO measurements we have adopted the sound horizon scale rs = 147.49 Mpc
from Planck CMB data, whose 0.4% uncertainty is small compared to the current BAO
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measurement errors [41]. We have converted both SN luminosity distances and BAO
DV distances to an equivalent comoving angular diameter distance.

The plotted cosmological model has Ωm = 0.315 and h = 0.673, the best-fit values [42]
from Planck CMB data assuming w = −1 and Ωk = 0. Specifically, here and below
we use parameter values and MCMC chains from the “Planck + WP” analysis of [43],
which combines the Planck temperature power spectrum with low multipole polarization
measurements from WMAP [44]. The SN, BAO, and CMB data sets, probing a wide
range of redshifts with radically different techniques, are mutually consistent with
the predictions of a flat ΛCDM cosmology. We have not included the z = 2.5 BAO
measurement from the BOSS Lyman-α forest [29] on this plot, but it is also consistent
with this fiducial model. Other curves in the lower panel of Figure 1.1 show the effect
of changing w by ±0.1 with all other parameters held fixed. However, single-parameter
comparison does not capture the impact of parameter degeneracies or the ability of
complementary data sets to break them.
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Figure 1.2: Constraints on the present matter fraction Ωm and dark energy model
parameters. Dark and light shaded regions indicate 68.3% and 95.4% confidence
levels, respectively. “CMB” is Planck+WP, “BAO” is the combination of SDSS-II,
BOSS, and 6dFGS, and “SN” is Union2. (a) The present dark energy fraction ΩΛ
vs. Ωm, assuming a ΛCDM model. CMB data, especially when combined with
BAO constraints, strongly favor a flat universe (diagonal dashed line). (b) The dark
energy equation of state w vs. Ωm, assuming a constant value of w. The dashed
contours show the 68.3% and 95.4% CL regions for the combination of WMAP9
and BAO data. Curves on the left vertical axis show the probability distributions
for w (normalized arbitrarily) after marginalizing over Ωm for the CMB+BAO and
CMB+BAO+SN combinations (yellow and black, respectively), using Planck+WP
CMB data, and for the WMAP9+BAO combination (dashed black). (c) Constraints
on the two parameters of the dark energy model with a time-dependent equation of
state given by Eq. (1.13): w(z = 0.5) and wa = −dw/da.

Figure 1.2a plots joint constraints on Ωm and ΩΛ in a ΛCDM cosmological model,
assuming w = −1 but not requiring spatial flatness. The SN constraints are computed
from the Union2 sample, and the CMB, CMB+BAO, and CMB+BAO+SN constraints
are taken from MCMC chains provided by the Planck Collaboration [43]. We do not
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14 1. Dark energy

examine BAO constraints separately from CMB because the constraining power of BAO
relies heavily on the CMB calibration of rs. The SN data or CMB data on their own are
sufficient to reject an ΩΛ = 0 universe, but individually they allow a wide range of Ωm

and significant non-zero curvature. The CMB+BAO combination zeroes in on a tightly
constrained region with Ωm = 0.309 ± 0.011 and Ωtot = 1.000 ± 0.0033. Combining SN
with CMB would lead to a consistent constraint with ∼ 3 − 4× larger errors. Adding the
SN data to the CMB+BAO combination makes only a small difference to the constraints
in this restricted model space.

Figure 1.2b plots constraints in the Ωm −w space, where we now consider models with
constant w(z) and (in contrast to panel a) assume spatial flatness. CMB data alone allow
a wide range of w, but combination with BAO narrows the allowed range sharply. The
preferred region is consistent with the orthogonal SN constraint, and the combination
of the three data sets yields smaller uncertainties. The black curve on the left axis
shows the posterior pdf for w after marginalizing (with a flat prior) over Ωm; we find
w = −1.10 ± 0.08 at 68.3% CL and −1.10 ± 0.15 at 95.4% CL. The dashed contours and
dashed marginal curve show the impact of substituting WMAP9 data for Planck+WP
in the CMB+BAO combination. The two constraints are compatible, but the shift from
WMAP to Planck has reduced the uncertainty in w and pulled the best-fit value lower.

Figure 1.2c considers a model space with time varying w, evolving according to the
linear parameterization w(a) = w0 + wa(1 − a), again assuming flat space. Instead of
w0 we show constraints on w(z = 0.5), approximately the pivot redshift where w is
best determined and covariance with wa is minimized. This plot shows that even the
combination of current CMB, BAO, and SN data places only weak constraints on time
evolution of the equation of state, still allowing order unity changes in w between z = 1
and z = 0 (∆a = 0.5). The value of w(z = 0.5), on the other hand, is reasonably well
constrained, with errors only slightly larger than those for the constant-w model of panel
b. Errors on w0 = w(z = 0.5)− 0.333wa are much larger and are strongly correlated with
the wa errors.

While the CMB, BAO, and SN data sets considered here are mutually consistent with
a flat ΛCDM model, tensions arise when other cosmological measurements enter the
mix. Blue and yellow contours in Figure 1.3a show CMB and CMB+BAO constraints in
the Ωm − H0 plane, assuming w = −1 and Ωk = 0. Red horizontal bars represent the
direct estimate H0 = 73.8 ± 2.4 km s−1 Mpc−1 from [45], who use SN Ia distances to
galaxies in the Hubble flow with the Ia luminosity scale calibrated by HST observations
of Cepheids in nearby SN host galaxies. Another recent estimate by [46], which
employs 3.6µm Cepheid observations to recalibrate the HST Key Project distance
ladder and reduce its uncertainties, yields a similar central value and estimated error,
H0 = 74.3 ± 2.1 km s−1 Mpc−1. Figure 1.3a indicates an ≈ 2σ tension between these
direct measurements and the CMB+BAO predictions. The tension was already present
with WMAP CMB data, as shown in Figure 1.3b, but it has become stiffer with Planck
because of smaller CMB+BAO errors and a shift of central values to slightly higher Ωm

and lower H0. In models with free, constant w (still assuming Ωk = 0), the tension can
be lifted by going to w < −1 and lower Ωm, as illustrated in Figure 1.3c. CMB data
determine Ωmh2 with high precision from the heights of the acoustic peaks, essentially
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Figure 1.3: Constraints on the present matter fraction Ωm and the Hubble
constant H0 from various combinations of data, assuming flat ΛCDM (left and
middle panels) or a constant dark energy equation of state w (right panel). Dark and
light shaded regions indicate 68.3% and 95.4% confidence levels, respectively. The
right panel also shows 100 Monte Carlo samples from the CMB+BAO constraints
with the value of w indicated by the colors of the dots. “CMB” is Planck+WP in
the outer panels and WMAP9 in the middle panel, “BAO” is the combination of
SDSS-II, BOSS, and 6dFGS, and “H0 (HST)” is the HST constraint from [45].

independent of w. Within the flat ΛCDM framework, the well determined distance to the
last scattering surface pins down a specific combination of (Ωm, h), but with free w one
can obtain the same distance from other combinations along the Ωmh2 degeneracy axis.

One should not conclude from Figure 1.3 that w 6= −1, but this comparison highlights
the importance of fully understanding, and reducing, systematic uncertainties in direct
H0 measurements. If errors were reduced and the central value remained close to
that plotted in Figure 1.3, then the implications would be striking. Other recent H0

determinations exhibit less tension with CMB+BAO because of lower central values
and/or larger errors [47,48], including the values of H0 = 68.9 ± 7.1 km s−1 Mpc−1 and
68 ± 9 km s−1 Mpc−1 from [49,50], who circumvent the traditional distance ladder by
using maser distances to galaxies in the Hubble flow. Gravitational lens time delays offer
another alternative to the traditional distance ladder, and their precision could become
competitive over the next few years with increasing sample sizes and better constrained
lens models.

The amplitude of CMB anisotropies is proportional to the amplitude of density
fluctuations present at recombination, and by assuming GR and a specified dark energy
model one can extrapolate the growth of structure forward to the present day to
predict σ8. As discussed in Sec. 1.3 probes of low redshift structure typically constrain
combinations σ8Ω

α
m with α ≈ 0.3 − 0.5. Figure 1.4 displays constraints in the σ8 − Ωm

plane from CMB+BAO data and from weak lensing and cluster surveys [51]. Planck
data themselves reveal a CMB lensing signature that constrains low redshift matter
clustering and suggests a fluctuation amplitude somewhat lower than the extrapolated
value for flat ΛCDM. However, including the CMB lensing signal only slightly alters the
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Figure 1.4: Constraints on the present matter fraction Ωm and the present
matter fluctuation amplitude σ8. Dark and light shaded regions indicate 68.3% and
95.4% confidence levels, respectively. The upper left panel compares CMB+BAO
constraints (using the same data sets as in Fig. 1.2) for ΛCDM with and without
CMB lensing, and for a constant w model (including CMB lensing). The other
three panels compare flat ΛCDM constraints between various dark energy probes,
including weak lensing (upper right panel) and clusters (lower panels).

Planck confidence interval for ΛCDM (purple vs. yellow contours in Fig. 1.4a). Allowing
free w (grey contours) expands this interval, primarily in the direction of lower Ωm and
higher σ8 (with w < −1).

The red contours in Figure 1.4b plot the constraint σ8(Ωm/0.27)0.46 = 0.774+0.032
−0.041

inferred from tomographic cosmic shear measurements in the CFHTLens survey [52]. An
independent analysis of galaxy-galaxy lensing and galaxy clustering in the SDSS yields a
similar result [53], σ8(Ωm/0.27)0.57 = 0.77 ± 0.05. Note that σ8 and Ωm refer to z = 0
values; the weak lensing samples and the cluster samples discussed below are not at zero
redshift, but the values of σ8 are effectively extrapolated to z = 0 for a fiducial cosmology.
(Within current parameter bounds, the uncertainty in extrapolating growth from z = 0.5
to z = 0 is 1 − 2%, small compared to the observational uncertainties.) There is ≈ 2σ
tension between the σ8 − Ωm combination predicted by Planck CMB+BAO for ΛCDM
and the lower value implied by the weak lensing measurements. This tension was weaker
for WMAP+BAO data (dotted contour) because of the larger error and slightly lower
best-fit parameter values.
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Additional contours in Figures 1.4c and d show σ8 − Ωm constraints inferred from
three representative cluster analyses [54]: σ8(Ωm/0.27)0.47 = 0.784 ± 0.027 (CPPP),
σ8(Ωm/0.27)0.41 = 0.806 ± 0.032 (MaxBCG), and σ8(Ωm/0.27)0.322 = 0.782 ± 0.010
(PlanckSZ). The basic mass calibration comes from X-ray data in CPPP, from weak
lensing data in MaxBCG, and from SZ data in PlanckSZ. Because the PlanckSZ
constraint itself incorporates BAO data, we have replaced the CMB+BAO contour with a
CMB-only contour in panel d. The σ8Ω

α
m constraints from recent cluster analyses are not

in perfect agreement, and the examples shown here are far from exhaustive. Nonetheless,
on balance the cluster analyses, like the weak lensing analyses, favor lower σ8Ω

α
m than the

value extrapolated forward from Planck assuming flat ΛCDM. Redshift-space distortion
analyses also tend to favor lower σ8Ω

α
m, though statistical errors are still fairly large. For

example, [55] find f(z)σ8(z) = 0.415 ± 0.034 from SDSS-III BOSS galaxies at z = 0.57,
while the best-fit Planck+BAO flat ΛCDM model predicts f(z)σ8(z) = 0.478 ± 0.008 at
this redshift. With somewhat more aggressive modeling assumptions, [56] infer f(z)σ8(z)
from the WiggleZ survey at z = 0.22, 0.41, 0.60, and 0.78, with ≈ 10% errors in the
three highest redshift bins (and 17% at z = 0.22), finding excellent agreement with
a flat ΛCDM model that has Ωm = 0.27 and σ8 = 0.8 and thus with the structure
measurements plotted in Figure 1.4.

Going from ΛCDM to wCDM does not readily resolve this tension because the CMB
degeneracy direction with free w is roughly parallel to the σ8Ω

α
m tracks from low redshift

structure (though the tracks themselves could shift or widen for w 6= −1). Each of
the low redshift probes has significant systematic uncertainties that may not be fully
represented in the quoted observational errors, and the tensions are only ≈ 2σ in the
first place, so they may be resolved by larger samples, better data, and better modeling.
However, it is notable that all of the discrepancies are in the same direction. On the
CMB side, the tensions would be reduced if the value of Ωm or the optical depth τ
(and thus the predicted σ8) has been systematically overestimated. The most exciting
but speculative possibility is that these tensions reflect a deviation from GR-predicted
structure growth, pointing towards a gravitational explanation of cosmic acceleration.
Other possible physical resolutions could come from dark energy models with significant
time evolution, from a massive neutrino component that suppresses low redshift structure
growth, or from decaying dark matter that reduces Ωm at low z.

Table 1.1 summarizes key results from Figures 1.2−1.4, with marginalized constraints
on Ωm, Ωtot, w, h, and σ8(Ωm/0.27)0.4 for the Planck+BAO, Planck+BAO+SN,
and WMAP9+BAO combinations. We list 68.3% errors, and also 95.4% errors for
WMAP9+BAO constraints on wCDM; in all other cases, the 95.4% errors are
very close to double the 68.3% errors. For ΛCDM the Planck combinations give
Ωtot = 1.000 with an error of 0.3% and they predict, approximately, h = 0.68 ± 0.01
and σ8(Ωm/0.27)0.4 = 0.87 ± 0.02. For wCDM, where flatness is assumed, the
Planck+BAO+SN combination yields w = −1.10+0.08

−0.07, consistent with a cosmological
constant at 1.2σ. With free w the best-fit h increases and its error roughly doubles,
but the error in σ8(Ωm/0.27)0.4 grows only slightly, and its best-fit value moves slightly
further away from the lower amplitudes suggested by measurements of low redshift
structure.
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Table 1.1: Constraints on selected parameters from various combinations of CMB,
BAO, and SN data, given as mean values ± 68.3% CL limits (and ± 95.4% CL
limits for WMAP9-wCDM). “Planck” combines the Planck temperature power
spectrum with WMAP large scale polarization. “BAO” combines the measurements
of SDSS-II, BOSS, and 6dFGS. “SN” refers to the Union2.1 compilation. The upper
(lower) half of the table assumes a ΛCDM (flat wCDM) cosmological model.

Data combination

Parameter Planck+BAO Planck+BAO+SN WMAP9+BAO

ΛCDM

Ωm 0.309+0.010
−0.011 0.307+0.011

−0.010 0.295+0.012
−0.012

Ωtot 1.000+0.0033
−0.0033 1.000+0.0032

−0.0033 1.003+0.004
−0.004

h 0.678+0.011
−0.010 0.679+0.010

−0.011 0.681+0.011
−0.011

σ8(Ωm/0.27)0.4 0.871+0.020
−0.021 0.869+0.020

−0.021 0.836+0.033
−0.033

wCDM (flat)

Ωm 0.287+0.021
−0.021 0.294+0.014

−0.014 0.299+0.022
−0.019

(

+0.045
−0.042

)

w −1.13+0.13
−0.11 −1.10+0.08

−0.07 −0.98+0.16
−0.12

(

+0.33
−0.29

)

h 0.708+0.026
−0.030 0.699+0.017

−0.018 0.681+0.025
−0.032

(

+0.060
−0.066

)

σ8(Ωm/0.27)0.4 0.888+0.025
−0.025 0.885+0.023

−0.023 0.84+0.05
−0.05

(

+0.09
−0.09

)

1.5. Summary and Outlook

The preceding figures and table focus on model parameter constraints, but as
a description of the observational situation it is most useful to characterize the
precision, redshift range, and systematic uncertainties of the basic expansion and
growth measurements. At present, supernova surveys constrain the relative distance
scale at the 1 − 2% level over the redshift range 0 < z < 0.6, with larger but still
interesting error bars out to z ≈ 1.2. These measurements are currently limited by
systematics tied to photometric calibration, extinction and reddening, and possible
evolution of the SN population. BAO surveys have measured the absolute distance
scale (calibrated to the sound horizon rs) to 4.5% at z = 0.11, 2% at z = 0.35 and
z = 0.57, 6% at z = 0.73, and 3% at z = 2.5. Multiple studies have used clusters of
galaxies or weak lensing cosmic shear or galaxy-galaxy lensing to measure a parameter
combination σ8Ω

α
m with α ≈ 0.3 − 0.5. The estimated errors of these studies, including
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both statistical contributions and identified systematic uncertainties, are about 5%. RSD
measurements constrain the combination f(z)σ8(z), with recent determinations spanning
the redshift range 0 < z < 0.9 with typical estimated errors of ∼ 10%. These errors
are dominated by statistics, but shrinking them further will require improvements in
modeling non-linear effects on small scales. Direct distance-ladder estimates of H0 now
span a small range (using overlapping data but distinct treatments of key steps), with
individual studies quoting uncertainties of 3 − 5%, with similar statistical and systematic
contribution. Planck data and higher resolution ground-based experiments now measure
CMB anisotropy with exquisite precision.

A flat ΛCDM model with standard radiation and neutrino content can fit the CMB
data and the BAO and SN distance measurements to within their estimated uncertainties.
However the Planck+BAO parameters for this model are in ≈ 2σ tension with some
of the direct H0 measurements and most of the cluster and weak lensing analyses,
disagreeing by about 10% in each case. Similar tensions are present when using WMAP
data in place of Planck data, but they are less evident because the WMAP errors are
larger and the best-fit Ωm value is lower. Moving from ΛCDM to wCDM can relieve the
tension with H0, but only by going to w < −1 (which would be more physically startling
than w > −1), and this change on its own does not produce better agreement with the
structure growth data. It is not clear whether current tensions should be taken as a sign
of new physics or as a sign that at least some of the experiments are underestimating
their systematic uncertainties. Factor-of-two reductions in error bars, if convincing, could
lead to exciting physical implications, or to a resolution of the existing mild discrepancies.
Moving forward, the community will have to balance the requirement of strong evidence
for interesting claims (such as w 6= −1 or deviations from GR) against the danger of
confirmation bias, i.e., discounting observations or error estimates when they do not
overlap simple theoretical expectations.

There are many ongoing projects that should lead to improvement in observational
constraints in the near-term and over the next two decades [57]. Final analyses of
Planck temperature and polarization maps will significantly tighten the CMB constraints,
including an important reduction of the uncertainty in the matter fluctuation amplitude
that will sharpen tests based on structure growth. Final data from the SDSS-III BOSS
survey, finishing in 2014, will reduce BAO errors by a factor of two at z = 0.3, 0.6,
and 2.5. Its SDSS-IV successor eBOSS will yield the first BAO measurements in the
redshift range 1 < z < 2 and improved precision at lower and higher redshifts. The
HETDEX project will measure BAO with Lyman-α emission line galaxies at z = 2 − 3.
The same galaxy surveys carried out for BAO also provide data for RSD measurements
of structure growth and AP measurements of cosmic geometry, and with improved
theoretical modeling there is potential for large precision gains over current constraints
from these methods. The Dark Energy Survey (DES), now starting operation and running
through 2018, will provide a sample of several thousand Type Ia SNe, enabling smaller
statistical errors and division of the sample into subsets for cross-checking evolutionary
effects and other systematics. DES imaging will be similar in depth but 50× larger in
area than CFHTLens, providing a much more powerful weak lensing data set and weak
lensing mass calibration of enormous samples of galaxy clusters (tens of thousands).
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Weak lensing surveys from the newly commissioned Hyper-Suprime Camera on the
Subaru telescope will be smaller in area but deeper, with a comparable number of lensed
galaxies. Reducing weak lensing systematics below the small statistical errors of these
samples will be a major challenge, but one with a large payoff in precision measurements
of structure growth. Uncertainties in direct determinations of H0 should be reduced by
further observations with HST and, in the longer run, by Cepheid parallaxes from the
GAIA mission, by the ability of the James Webb Space Telescope to discover Cepheids in
more distant SN Ia calibrator galaxies, and by independent estimates from larger samples
of maser galaxies and gravitational lensing time delays.

A still more ambitious period begins late in this decade and continues through the
2020s, with experiments that include the Dark Energy Spectroscopic Instrument (DESI),
the Subaru Prime Focus Spectrograph (PFS), the Large Synoptic Survey Telescope
(LSST), and the space missions Euclid and WFIRST (Wide Field Infrared Survey
Telescope). DESI and PFS both aim for major improvements in the precision of BAO,
RSD, and other measurements of galaxy clustering in the redshift range 0.8 < z < 2,
where large comoving volume allows much smaller cosmic variance errors than low
redshift surveys like BOSS. LSST will be the ultimate ground-based optical weak lensing
experiment, measuring several billion galaxy shapes over 20,000 deg2 of the southern
hemisphere sky, and it will detect and monitor many thousands of SNe per year. Euclid
and WFIRST also have weak lensing as a primary science goal, taking advantage of the
high angular resolution and extremely stable image quality achievable from space. Both
missions plan large spectroscopic galaxy surveys, which will provide better sampling at
high redshifts than DESI or PFS because of the lower infrared sky background above
the atmosphere. WFIRST is also designed to carry out what should be the ultimate
supernova cosmology experiment, with deep, high resolution, near-IR observations and
the stable calibration achievable with a space platform.

Performance forecasts necessarily become more uncertain the further ahead we
look, but collectively these experiments are likely to achieve 1 − 2 order of magnitude
improvements over the precision of current expansion and growth measurements, while
simultaneously extending their redshift range, improving control of systematics, and
enabling much tighter cross-checks of results from entirely independent methods. The
critical clue to the origin of cosmic acceleration could also come from a surprising
direction, such as laboratory or solar system tests of GR, time variation of fundamental
“constants,” or anomalous behavior of gravity in some astronomical environments.
Experimental advances along these multiple axes could confirm today’s relatively simple,
but frustratingly incomplete, “standard model” of cosmology, or they could force yet
another radical revision in our understanding of energy, or gravity, or the spacetime
structure of the universe.
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4. G. Lemâitre, Un Univers homogène de masse constante et de rayon croissant rendant
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